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Biological Preliminaries Telomeres
Stem Cells and Differentiation
Cell Mutations and Cancer

Telomeres and Cell Division

@ Definition: repeated sequence of DNA that protects
important DNA during the process of cell division.
@ Cell Division leads to loss of telomeres.
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Figure: The process of asymmetrical telomere shortening as a cell divides
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Biological Preliminaries Telomeres
Stem Cells and Differentiation
Cell Mutations and Cancer

Stem Cells

@ Properties of stem cell: self-renewal, ability to differentiate.
@ Progenitor cells: medium stage of differentiation.
@ Mature (differentiated) cells: they have specific functions.
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Biological Preliminaries Telomeres
Stem Cells and Differentiation
Cell Mutations and Cancer

Mutation accumulation

@ Vogelgram - represents the sequence of mutations in a cell
that eventually leads to a cancerous cell.
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Figure: A Genetic Model for Colorectal Tumorigenesis. This is an example of a Vogelgram - multistep
cancer progression model (http://www.hopkinscoloncancercenter.org)

Georgi Kapitanov A Mathematical Model of Cancer Stem Cell Lineage Population D



The Model

The Mathematical Model
Model analysis

Questions to address

@ Considering cell mutation as a dynamic population
process, rather than a one-time random event, what can
we show about cancer cell population growth in relation to
the growth of the populations of non-cancer cells?

@ What is the role of stem cells in the cell population
dynamics?

@ |s the cancer stem cell count as small as scientists have

claimed (some results claim that only one in ten thousand
cancer cells is a cancer stem cell[32][4])?
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Equations
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Model analysis

Explanation of the Terms

@ j=1,...,nrepresents the number of telomeres of a cell.

@ i=0,....,m—1is the number of mutations a cell has
accumulated.

@ Fort>0,u;(at) € Li([0,00)), represents the density of cells
with age a at time t, in the ™ telomere class, with i mutations.

@ u;i(a) > 0, is the age-specific mortality rate of cells in the j#
telomere, i mutation class.

@ j;i(a) > 0, is the age-specific proliferation rate of cells in the
telomere, i mutation class.

@ p;ki > 0, is the probability that one of the daughters of a cell in

the k™ telomere, i mutation class will be a cell in the j1
telomere, i mutation class.

@ qjki—1 > 0, is the probability that a cell in the k' telomere,
(i — 1)™ mutation class will produce, by acquiring a mutation

during division. a cell in the j telomere, i mutation class.
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The Mathematical Model .
Model analysis

Hypotheses

@ pji=5V1<j<n0<i<m-1.

@ piki=0forj>kVvV2<j<n0<i<m-1.

@ giki=0forj>kVvV2<j<n0<i<m-1.

© > ki1 Piki+ ke Gki =3 V1 <j<m0<i<m-2
@ pjj(a) =, >0v1<j<nm0<i<m-A1

@ Bii(a)=pi>0v1<j<n0<i<m—1
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Recasting the problem

@ New system of equations: U'(t) = AU(t)
e Initial conditions: U(0) = &
e Solution: U(t) = eA®

o
Pb 0 O
Q1 P1 0
0 Q& P
o
—K1,0 2p12,082,0 0 0 0 0
0 Sz 0 0 0
201,1,081,0  291,2,082,0 — K11 2p1,2,182,1 0 0
202,2,082,0 0 —p2,1 0 0
0 0 29111811 29121821 —m12 2P 22822
0 0 0 202,2,182,1 0 —H2.2
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Linear Case Resulis

o If,forevery 1 <j<nandforevery0 </i<m-—1, pu;; >0,
then lim;_,c U;i(t) = 0.

o If,forevery 1 <j<nandforevery0 </i<m-—1, y;; =0,
then U ;(t) is a polynomial in t of degree n — j + .
Furthermore, the coefficient of t"~/*/ of this polynomial is a
multiple of @, g.
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The Mathematical Model

Numerical Results for Linear Model - Figure 1
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Flgure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations
necessary to reach malignancy). Polynomial growth of cells with one mutation (i = 1 mutation). Stem cells (j = 3
telomeres) grow linearly, progenitor cells (j = 2 telomeres) in t2, and differentiated cells (j = 1 telomere) in .
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Numerical Results for Linear Model - Figure 2
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Flgure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations

necessary to reach malignancy). Polynomial growth (t*) of differentiated cancer cells(j = 1 telomere, i = 2

mutations).

Georgi Kapitanov A Mathematical Model of Cancer Stem Cell Lineage Population D



The Model
Model analysis

The Mathematical Model

Numerical Results for Linear Model - Figure 3
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Flgure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations

necessary to reach malignancy). Polynomial growth (£3) of progenitor cancer cells (j = 2 telomeres, i = 2
mutations).
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Numerical Results for Linear Model - Figure 4
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Flgure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations
necessary to reach malignancy). Polynomial growth (l2) of cancer stem cells (j = 3 telomeres, i = 2 mutations)
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Nonlinear Case

o U'(t) = AU(t) — F(U(t)U(t)
@ Fis a positive linear functional from Ly(R") to R,
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Assumptions for the Nonlinear Case

@ pjij(@=p;>0v1<j<n0<i<m-A1.

° pii(a)=p,;>0v1<j<nm0<i<m—1,

@ pixi=0forj>kVvVi<j<n0<i<m-A1.

@ Note: pj;; need notequal 3,v1 <j<n0<i<m-1.
® \o = —tinm—1 — Bn,m-1+ 2Pnnm—18nm-1-
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The Mathematical Model Model analysis

Result for Nonlinear Case

@ There is a unique solution to the equation above and the
eigenspace of the dominant eigenvalue o of Ais one
dimensional. Further, the first n(m — 1) entries of ¥ are 0,

the last n are non-zero, and lim;_,. U(t) = ,_fz’n“og) = 2?\;’)
0

where Tl is the eigenprojection associated with Ao, U(t) is
the unique solution to the equation, and V¥ is an
eigenvector of \.
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Numerical Result for Nonlinear Model
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Figure: Nonlinear model with n = 8 maximum number of telomeres and m = 6 mutation classes (5 mutations
necessary to reach malignancy). Cancer cells (i = 5 mutations) taking over the tissue environment according to the
asymptotic steady state result.
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Discussion

Summary and Discussion

@ Question 1: Considering cell mutation as a dynamic
population process, rather than a one-time random event,
what can we show about cancer cell population growth in
relation to the growth of the populations of non-cancer
cells?

e Answer: The theorem for the linear model proves that the
number of cancer cells grows faster polynomially than any
other type of cell and it is the nature of mutation acquisition
that explains the higher population growth of cancer cells.

e However, cancer cells do need to exhibit high proliferation
rate in order for their population to grow to levels dangerous
for the organism in a realistic time frame.
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Discussion

@ Question 2: What is the role of stem cells in the cell
population dynamics?
e Answer: Stem cells are crucial for the development of all
other cell classes and are also important for the rate at
which those different cell populations grow.
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Discussion

@ Question 3: Is the cancer stem cell count as small as
scientists have claimed?

o Answer: A relatively small subpopulation of cancer stem
cells can generate the total population of cancer cells.
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