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Telomeres and Cell Division

Definition: repeated sequence of DNA that protects
important DNA during the process of cell division.
Cell Division leads to loss of telomeres.

Figure: The process of asymmetrical telomere shortening as a cell divides
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Stem Cells

Properties of stem cell: self-renewal, ability to differentiate.
Progenitor cells: medium stage of differentiation.
Mature (differentiated) cells: they have specific functions.
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Mutation accumulation

Vogelgram - represents the sequence of mutations in a cell
that eventually leads to a cancerous cell.

Figure: A Genetic Model for Colorectal Tumorigenesis. This is an example of a Vogelgram - multistep
cancer progression model (http://www.hopkinscoloncancercenter.org)
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Questions to address

Considering cell mutation as a dynamic population
process, rather than a one-time random event, what can
we show about cancer cell population growth in relation to
the growth of the populations of non-cancer cells?
What is the role of stem cells in the cell population
dynamics?
Is the cancer stem cell count as small as scientists have
claimed (some results claim that only one in ten thousand
cancer cells is a cancer stem cell[32][4])?
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Equations

∂uj,i(a, t)
∂t +

∂uj,i(a, t)
∂a = −(µj,i(a) + βj,i(a))uj,i(a, t)

uj,i(0, t) = 2
n∑

k=j

(pj,k ,i

∫ ∞
0

βk ,i(a)uk ,i(a, t)da +

qj,k ,i−1

∫ ∞
0

βk ,i−1(a)uk ,i−1(a, t)da)

uj,i(a,0) = φj,i(a)
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Explanation of the Terms

j = 1, ...,n represents the number of telomeres of a cell.

i = 0, ...,m − 1 is the number of mutations a cell has
accumulated.

For t ≥ 0,uj,i (a, t) ∈ L1([0,∞)), represents the density of cells
with age a at time t , in the j th telomere class, with i mutations.

µj,i (a) ≥ 0, is the age-specific mortality rate of cells in the j th

telomere, i th mutation class.

βj,i (a) > 0, is the age-specific proliferation rate of cells in the j th

telomere, i th mutation class.

pj,k,i > 0, is the probability that one of the daughters of a cell in
the k th telomere, i th mutation class will be a cell in the j th

telomere, i th mutation class.

qj,k,i−1 > 0, is the probability that a cell in the k th telomere,
(i − 1)th mutation class will produce, by acquiring a mutation
during division, a cell in the j th telomere, i th mutation class.
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Hypotheses

pj,j,i = 1
2 ,∀1 ≤ j ≤ n,0 ≤ i ≤ m − 1.

pj,k ,i = 0 for j > k ,∀2 ≤ j ≤ n,0 ≤ i ≤ m − 1.
qj,k ,i = 0 for j > k ,∀2 ≤ j ≤ n,0 ≤ i ≤ m − 1.∑n

k=j+1 pj,k ,i +
∑n

k=j qj,k ,i = 1
2 , ∀1 ≤ j ≤ n; 0 ≤ i ≤ m − 2.

µj,i(a) = µj,i ≥ 0, ∀1 ≤ j ≤ n; 0 ≤ i ≤ m − 1
βj,i(a) = βj,i > 0,∀1 ≤ j ≤ n; 0 ≤ i ≤ m − 1
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Recasting the problem

New system of equations: ~U ′(t) = A~U(t)

Initial conditions: ~U(0) = ~Φ

Solution: ~U(t) = etA~ΦP0 0 0
Q1 P1 0
0 Q2 P2




−µ1,0 2p1,2,0β2,0 0 0 0 0
0 −µ2,0 0 0 0

2q1,1,0β1,0 2q1,2,0β2,0 −µ1,1 2p1,2,1β2,1 0 0
0 2q2,2,0β2,0 0 −µ2,1 0 0
0 0 2q1,1,1β1,1 2q1,2,1β2,1 −µ1,2 2p1,2,2β2,2
0 0 0 2q2,2,1β2,1 0 −µ2,2



Georgi Kapitanov A Mathematical Model of Cancer Stem Cell Lineage Population Dynamics with Mutation Accumulation and Telomere Length Hierarchies



Biological Preliminaries
The Mathematical Model

Discussion

The Model
Model analysis

Linear Case Results

If, for every 1 ≤ j ≤ n and for every 0 ≤ i ≤ m − 1, µj,i > 0,
then limt→∞Uj,i(t) = 0.
If, for every 1 ≤ j ≤ n and for every 0 ≤ i ≤ m − 1, µj,i = 0,
then Uj,i(t) is a polynomial in t of degree n − j + i .
Furthermore, the coefficient of tn−j+i of this polynomial is a
multiple of Φn,0.
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Numerical Results for Linear Model - Figure 1

Figure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations
necessary to reach malignancy). Polynomial growth of cells with one mutation (i = 1 mutation). Stem cells (j = 3
telomeres) grow linearly, progenitor cells (j = 2 telomeres) in t2, and differentiated cells (j = 1 telomere) in t3.
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Numerical Results for Linear Model - Figure 2

Figure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations

necessary to reach malignancy). Polynomial growth (t4) of differentiated cancer cells(j = 1 telomere, i = 2
mutations).
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Numerical Results for Linear Model - Figure 3

Figure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations

necessary to reach malignancy). Polynomial growth (t3) of progenitor cancer cells (j = 2 telomeres, i = 2
mutations).
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Numerical Results for Linear Model - Figure 4

Figure: Linear model with n = 3 maximum number of telomeres and m = 3 mutation classes (2 mutations

necessary to reach malignancy). Polynomial growth (t2) of cancer stem cells (j = 3 telomeres, i = 2 mutations).
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Nonlinear Case

~U ′(t) = A~U(t)− F (~U(t))~U(t)
F is a positive linear functional from L1(RN

+) to R+
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Assumptions for the Nonlinear Case

µj,i(a) = µj,i > 0, ∀1 ≤ j ≤ n; 0 ≤ i ≤ m − 1.
βj,i(a) = βj,i > 0,∀1 ≤ j ≤ n; 0 ≤ i ≤ m − 1.
pj,k ,i = 0 for j > k ,∀1 ≤ j ≤ n; 0 ≤ i ≤ m − 1.

Note: pj,j,i need not equal 1
2 ,∀1 ≤ j ≤ n,0 ≤ i ≤ m − 1.

λ0 = −µn,m−1 − βn,m−1 + 2pn,n,m−1βn,m−1.
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Result for Nonlinear Case

There is a unique solution to the equation above and the
eigenspace of the dominant eigenvalue λ0 of A is one
dimensional. Further, the first n(m − 1) entries of ~Ψ are 0,
the last n are non-zero, and limt→∞ ~U(t) = λ0Π0~Φ

F (Π0~Φ)
= λ0~Ψ

F (~Ψ)
,

where Π0 is the eigenprojection associated with λ0, ~U(t) is
the unique solution to the equation, and ~Ψ is an
eigenvector of λ0.
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Numerical Result for Nonlinear Model

Figure: Nonlinear model with n = 8 maximum number of telomeres and m = 6 mutation classes (5 mutations
necessary to reach malignancy). Cancer cells (i = 5 mutations) taking over the tissue environment according to the
asymptotic steady state result.
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Summary and Discussion

Question 1: Considering cell mutation as a dynamic
population process, rather than a one-time random event,
what can we show about cancer cell population growth in
relation to the growth of the populations of non-cancer
cells?

Answer: The theorem for the linear model proves that the
number of cancer cells grows faster polynomially than any
other type of cell and it is the nature of mutation acquisition
that explains the higher population growth of cancer cells.
However, cancer cells do need to exhibit high proliferation
rate in order for their population to grow to levels dangerous
for the organism in a realistic time frame.
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Question 2: What is the role of stem cells in the cell
population dynamics?

Answer: Stem cells are crucial for the development of all
other cell classes and are also important for the rate at
which those different cell populations grow.
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Question 3: Is the cancer stem cell count as small as
scientists have claimed?

Answer: A relatively small subpopulation of cancer stem
cells can generate the total population of cancer cells.
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